This Carbon Dioxide Essay example is published for educational and informational purposes only. If you need a custom essay or research paper on this topic, please use our writing services. EssayEmpire.com offers reliable custom essay writing services that can help you to receive high grades and impress your professors with the quality of each essay or research paper you hand in.
Carbon dioxide (CO2) is a chemical compound made up of one carbon atom and two oxygen atoms. While it is a trace gas in the atmosphere in terms of volume, it is of central interest to atmospheric chemistry due to its capacity to trap incoming solar radiation in the atmosphere. For this reason, it has become known as a greenhouse gas, where increases of carbon dioxide into the atmosphere cause climate changes, which include global warming. Other greenhouse gases include methane (CH4), nitrous oxide (N2O), tropospheric ozone (O3), halocarbons (CFCs, HFCs, HCFCs), and water vapor (H2Ov). Carbon dioxide is the principle greenhouse gas that contributes to climate change and global warming, as increases in carbon dioxide have contributed most to climate change compared to other greenhouse gases over time.
Carbon dioxide is part of larger carbon cycles on Earth. All living things are composed primarily of carbon, so the cycling of carbon through the various spheres can provide indications of the health of the planet. Unlike other greenhouse gases, carbon dioxide is not broken down or destroyed through chemical reactions. Aside from time spent in the atmosphere mainly as carbon dioxide, carbon also moves through the biosphere, hydrosphere and lithosphere. For example, atmospheric carbon dioxide is taken out of the atmosphere and up into the biosphere through photosynthesis. The carbon can then stay in this “reservoir” until the forest dies and decomposes, is cut down, or is burned. At this time, carbon is then released again to the atmosphere mainly as carbon dioxide.
There are many reasons why carbon dioxide is so influential in climate change. Among them, carbon dioxide has a long “residence time:” emissions can stay in the atmosphere for up to 200 years. For instance, emissions from a 1911 Model T Ford are potentially in the atmosphere today. This also means that even if all carbon dioxide emissions were halted today, declines in atmospheric carbon dioxide would only begin after the carbon dioxide cycled out of the atmosphere into another reservoir. Furthermore, carbon dioxide is the greenhouse gas most directly responsible for climate change by way of human activities (called anthropogenic climate change). This is also called the enhanced greenhouse effect. In the climate science community, there is overwhelming consensus that human activity has significantly driven climate changes in the past two centuries.
It is important to understand that there are also natural sources of carbon dioxide emissions. These include plant decomposition and volcanic activity, which contribute to a baseline natural greenhouse effect that makes the world habitable. Without them, the earth would on average be about 60 degrees F cooler and the planet would be covered with ice. With this natural greenhouse effect, humans have been able to live and enjoy benefits such as forest and food growth.
Looking more carefully at this distinction in sources of carbon dioxide emissions, climate research has shown that three quarters of atmospheric warming since 1850 the beginning of the Industrial Revolution has been attributed to anthropogenic sources. These anthropogenic sources include fossil fuel burning (primarily coal, gas, and oil) and land use change. In the United States, roughly a quarter of anthropogenic climate changes can be attributed each to transportation, industry, household use/infrastructure, and land use and land-cover changes. Thus, increases in concentrations of atmospheric carbon dioxide and associated climate changes critically permeate economic, environmental, political, cultural, and societal aspects of life on the planet.
Current heavy reliance on carbon-based sources for energy in industry and society has led to significant human contributions of carbon dioxide, and thus further changes in the climate, such as sea level rise. This particular period of time has been referred to as the Anthropocene Era, or the Age of the Hydrocarbon Human. Measurements over time show that atmospheric carbon dioxide concentrations have now risen to approximately 381 parts per million (ppm), a 36 percent increase from preindustrial levels (around 280 ppm). These data have been aggregated with other climate proxy data-such as ice cores, tree rings, and archaeological information-that help to understand past atmospheric concentrations of carbon dioxide. Together, these have shown that the recent increase in atmospheric carbon dioxide exceeds the bounds of natural variability experienced during the preceding 650,000 years.
Within carbon-based industry and society there are uneven patterns of consumption and consequent carbon dioxide emissions. One way to consider anthropogenic carbon dioxide emissions is on the country level. At this scale, the United States is the world leader, accounting for approximately 25 percent of global carbon dioxide emissions. Related to this, the United States is also the world leader in oil consumption, where 20 million barrels are consumed every day. China follows second, as a large consumer of coal, accounting for about 14 percent of global carbon dioxide emissions. Russia (7 percent), Japan (5 percent), and India (5 percent) are the third-, fourth-, and fifth-largest carbon dioxide emitters, respectively. These five countries are then followed in order by Germany, the UK, Canada, Italy, and South Korea. Emissions are increasing at a faster rate in the global south; left unchecked, many predict that Chinese emissions will surpass those of the United States by 2030. Another way this is considered is through per capita-or individual-carbon dioxide emissions. The United States leads the planet in per capita emissions, with 19.1 metric tons per year.
While China ranks as the second-largest emitter of carbon dioxide emissions, the individual emissions of a typical citizen in China are less than 1/8th that of the United States. The individual emissions of a citizen of Russia or Japan are both about onehalf that of a U.S. citizen, while a citizen of India emits less than 1/20th that of a U.S. citizen. This per capita approach provides a much different picture of carbon dioxide emissions. Different perspectives like these can serve to reshape and broaden views on current and future plans for carbon dioxide emissions reductions policies and programs.
Bibliography:
- John T. Houghton, Global Warming: The Complete Briefing (Cambridge University Press, 2004);
- Fred T. MacKenzie, Our Changing Planet (Prentice Hall, 2002);
- Stephen H. Schneider, Armin Rosencranz, and John Niles, eds., Climate Change Policy: A Survey (Island Press, 2002);
- William Schlesinger, Biogeochemistry: An Analysis of Global Change (Academic Press, 1997);
- Spencer Weart, The Discovery of Global Warming (Harvard University Press, 2003).